Nuestra lista de correo. Espera aprobación.
Correo electrónico:
Consultar este grupo

lunes, 18 de septiembre de 2017

#WebinarAMEXBIO Transporte de Sustancias Infecciosas entre Instituciones

Registro por internet en:

Sigue este Blog en Facebook y Twitter

Detection of viral proteins in human cells lines by xeno-proteomics

Cell cultures used routinely in proteomic experiments may contain proteins from other species because of infection, transfection or just contamination. Since infection or contamination may affect the results of a biological experiment, it is important to test the samples for the presence of “alien” proteins. Usually cells are tested only for the most common infections, and most of the existing tests are targeting specific contaminations. Here we describe a three-step procedure for reliable untargeted detection of viral proteins using proteomics data, and recommend this or similar procedure to be applied to every proteomics dataset submitted for publication.
Chernobrovkin AL, Zubarev RA. Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins. PLoS One. 2014 Mar 11;9(3):e91433.  doi: 10.1371/journal.pone.0091433. eCollection 2014. PubMed PMID: 24618588; PubMed Central PMCID: PMC3950186

Sigue este Blog en Facebook y Twitter

miércoles, 13 de septiembre de 2017

Selecting Protective Clothing for Protection against Microorganisms in Blood and Body Fluids

Healthcare workers can be exposed to biological fluids that are capable of transmitting diseases. Those diseases, which are caused by a variety of microorganisms such as, Hepatitis B virus (HBV), Hepatitis C virus (HCV), Ebola Virus, and Human Immunodeficiency Virus (HIV) can pose significant risks to life and health. Healthcare workers wear protective clothing (e.g., surgical gowns, isolation gowns, and coveralls) to protect both patients and themselves from the transfer of microorganisms by blood and body fluids. A common misunderstanding among many end-users is that they are protected from blood, body fluids, and other potentially infectious materials when they wear any type of fluid-resistant garment. This document provides an overview of scientific evidence and information on national and international standards, test methods, and specifications for fluid-resistant and impermeable gowns and coveralls used in healthcare. This document focuses on selecting protective clothing primarily on the basis of their barrier properties; it does not address all aspects of garments related to their design, integrity, durability, comfort, and functionality.

Considerations for Selecting Protective Clothing used in Healthcare for Protection against Microorganisms in Blood and Body Fluids
Download PDF HERE or HERE

Sigue este Blog en Facebook y Twitter

lunes, 11 de septiembre de 2017

Guidance for Donning and Doffing Personal Protective Equipment (PPE) for #Ebola

The following informational materials demonstrate the procedures described in CDC guidance for donning and doffing (i.e., putting on and removing) personal protective equipment (PPE) for all healthcare providers entering the room of a patient hospitalized with known or suspected Ebola virus disease (Ebola). These informational materials are intended to promote patient safety and increase the safety of the healthcare provider.
Prior to working with Ebola patients, all healthcare providers involved in the care of Ebola patients must receive training and demonstrate competency in performing all Ebola-related infection control practices and procedures, specifically in donning and doffing proper PPE.

Guidance for Donning and Doffing Personal Protective Equipment (PPE) During Management of Patients with Ebola Virus Disease in U.S. Hospitals. CDC 2014.

Sigue este Blog en Facebook y Twitter

jueves, 7 de septiembre de 2017

Acerca de las batas médicas

Las batas son ejemplos de equipos de protección personal utilizados en los entornos de atención médica. Se utilizan para proteger al usuario de la propagación de una infección o enfermedad si el usuario entra en contacto con material líquido y sólido potencialmente infeccioso. También pueden usarse para ayudar a evitar que el usuario del vestido pueda contaminar a pacientes vulnerables, como aquellos con sistemas inmunológicos debilitados. Las batas son una parte de una estrategia de control de infecciones. Algunos de los muchos términos que se han utilizado para referirse a las batas destinados a ser utilizados en los entornos de atención médica, incluyen batas quirúrgicas, ropa de aislamiento, ropa de aislamiento quirúrgico, batas no quirúrgicos, batas de procedimiento y batas sala de operaciones.
 En 2004, la FDA reconoció el estándar de consensodel  American National Standards Institute/Association of the Advancement of Medical Instrumentation (ANSI/AAMI) PB70:2003, “Liquid barrier performance and classification of protective apparel and drapes intended for use in health care facilities.”. La nueva terminología de la norma describe los niveles de protección de barrera de batas y otras prendas de protección destinadas a ser utilizadas en instalaciones de atención médica y especifica métodos de prueba y resultados de desempeño necesarios para verificar y validar los niveles de protección recientemente definidos:
  • Nivel 1: Riesgo mínimo, para ser utilizado, por ejemplo, durante la atención básica, aislamiento estándar, vestido de cubierta para los visitantes, o en una unidad médica estándar 
  • Nivel 2: Bajo riesgo, que se utilizará, por ejemplo, durante la extracción de sangre, sutura, en la Unidad de Cuidados Intensivos (UCI), o un laboratorio de patología 
  • Nivel 3: Riesgo moderado, que se utilizará, por ejemplo, durante la extracción de sangre arterial, inserción de una vía intravenosa (IV), en la sala de emergencias o en casos de traumatismos 
  • Nivel 4: Alto riesgo, para ser utilizado, por ejemplo, durante largos procedimientos intensivos en líquidos, cirugía, cuando se necesita resistencia a patógenos o se sospecha de enfermedades infecciosas (no aerotransportadas)
Sigue este Blog en Facebook y Twitter

miércoles, 6 de septiembre de 2017

lunes, 4 de septiembre de 2017

Eye Safety in Dentistry and Associated Liability

The first objective of this article is to expressan experimental-work-supported opinion ofits authors regarding the inadequacy of thepresent dental mask and regular eyewearcombination for protecting dental care practitioners. Its second objective is to suggestamending OSHA Standard 1910.133(a)(1) tomandate effective eye protection for dentalcare practitioners by requiring the use ofeffective means for closing the bottom gapsbetween the lower rims of the lenses of theprotective eyewear and the upper edge ofthe mask worn by the practitioner.The various types and sources of dentalpractice eye occupational hazards and thepossible entry routes of dental debris towarddental practitioners'eyes are discussed.Experimental work, confirming theinadequacy of the present dental mask andeyewear combination for protecting dentalcare practitioners, is presented.
Arsenault P, Tayebi A. Eye Safety in Dentistry and Associated Liability. J Mass Dent Soc. 2016 Winter;64(4):12-6. PubMed PMID: 27197360.

Sigue este Blog en Facebook y Twitter

lunes, 28 de agosto de 2017

Cost-effectiveness analysis of N95 respirators and medical masks to protect healthcare workers in China

Background: There are substantial differences between the costs of medical masks and N95 respirators. Cost-effectiveness analysis is required to assist decision-makers evaluating alternative healthcare worker (HCW) mask/respirator strategies. This study aims to compare the cost-effectiveness of N95 respirators and medical masks for protecting HCWs in Beijing, China.
Methods: We developed a cost-effectiveness analysis model utilising efficacy and resource use data from two cluster randomised clinical trials assessing various mask/respirator strategies conducted in HCWs in Level 2 and 3 Beijing hospitals for the 2008–09 and 2009–10 influenza seasons. The main outcome measure was the incremental cost-effectiveness ratio (ICER) per clinical respiratory illness (CRI) case prevented. We used a societal perspective which included intervention costs, the healthcare costs of CRI in HCWs and absenteeism costs.
Results: The incremental cost to prevent a CRI case with continuous use of N95 respirators when compared to medical masks ranged from US $490–$1230 (approx. 3000-7600 RMB). One-way sensitivity analysis indicated that the CRI attack rate and intervention effectiveness had the greatest impact on cost-effectiveness.
Conclusions: The determination of cost-effectiveness for mask/respirator strategies will depend on the willingness to pay to prevent a CRI case in a HCW, which will vary between countries. In the case of a highly pathogenic pandemic, respirator use in HCWs would likely be a cost-effective intervention.
Keywords: Cost-effectiveness, Economic evaluation, N95 respirator, Mask, Healthcare worker

Mukerji, Shohini et al. “Cost-Effectiveness Analysis of N95 Respirators and Medical Masks to Protect Healthcare Workers in China from Respiratory Infections.” BMC Infectious Diseases 17 (2017): 464. PMC. Web. 7 Aug. 2017.

Sigue este Blog en Facebook y Twitter

lunes, 21 de agosto de 2017

Respirator Performance against Nanoparticles under Simulated Workplace Activities

FFRS      /      EHRS
Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10–400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10–100 nm), larger size particles (100–400 nm), and the ‘all size’ range (10–400 nm). All respirators provided better or similar performance levels for 10–100 nm particles as compared to larger 100–400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P<0.05) for both FFR and EHR types. All respirators provided expected performance (i.e. fifth percentile SWPF > 10) against all particle size ranges tested.
Vo, Evanly et al. “Respirator Performance against Nanoparticles under Simulated Workplace Activities.” The Annals of occupational hygiene 59.8 (2015): 1012–1021. PMC. Web. 7 Aug. 2017.

Sigue este Blog en Facebook y Twitter

jueves, 17 de agosto de 2017


Related Posts Plugin for WordPress, Blogger...