Nuestra lista de correo. Espera aprobación.
Correo electrónico:
Consultar este grupo

viernes, 29 de junio de 2012

School Chemistry Laboratory Safety Guide

DESCARGAR AQUI
Esta guía (School Chemistry Laboratory Safety Guide) escrita inicialmente en 1984 y actualizada en 2006, fué desarrollada por U.S. Consumer Product Safety Commission y el National Institute for Occupational Safety and Health (NIOSH) como una ayuda a profesores de ciencia para identificar sustancias peligrosas. El documento provee de información a profesores y estudiantes, para tomar acciones preventivas para minimizar los riesgos, exposiciones y accidentes de laboratorio. Esta guía presenta información sobre cómo ordenar, usar, almacenar y mantener sustancias químicas en laboratorios de enseñanza. La guía provee además de información sobre los desechos químicos, equipo de protección y de emergencia, evaluación de riesgos químicos, símbolos y señales químicas comunes, como las hojas de seguridad de materiales y los planes de higiene química. Además, contiene listas de revisión para revisar la información importante para el trabajo de laboratorio, identificar los riesgos y tener procedimientos de trabajo menos riesgosos.

- - - ENGLISH - - -
In 1984, the Council of State Science Supervisors, in association with the U.S. Consumer Product Safety Commission and the National Institute for Occupational Safety and Health, published the safety guide School Science Laboratories: A Guide to Some Hazardous Substances to help science teachers identify hazardous substances that may be used in school laboratories and provide an inventory of these substances. The document attempts to provide teachers, and ultimately their students, with information so that they can take the appropriate precautionary actions in order to prevent or minimize hazards, harmful exposures, and injuries in the laboratory. The guide presents information about ordering, using, storing, and maintaining chemicals in the high school laboratory. The guide also provides information about chemical waste, safety and emergency equipment, assessing chemical hazards, common safety symbols and signs, and fundamental resources relating to chemical safety, such as Material Safety Data Sheets and Chemical Hygiene Plans, to help create a safe environment for learning. In addition, checklists are provided for both teachers and students that highlight important information for working in the laboratory and identify hazards and safe work procedures.

Referencia:
School Chemistry Laboratory Safety Guide
DHHS (NIOSH) Publication No. 2007–107

jueves, 21 de junio de 2012

Publica Science artículo de Fouchier sobre la transmisión de influenza H5N1

Ir al artículo original
Finalmente la revista Science publica el controversial artículo original de Fouchier et al. sobre la transmisión de influenza H5N1 en mamíferos.

REFERENCIAS

ABSTRACT
Highly pathogenic avian influenza A/H5N1 virus can cause morbidity and mortality in humans but thus far has not acquired the ability to be transmitted by aerosol or respiratory droplet (“airborne transmission”) between humans. To address the concern that the virus could acquire this ability under natural conditions, we genetically modified A/H5N1 virus by site-directed mutagenesis and subsequent serial passage in ferrets. The genetically modified A/H5N1 virus acquired mutations during passage in ferrets, ultimately becoming airborne transmissible in ferrets. None of the recipient ferrets died after airborne infection with the mutant A/H5N1 viruses. Four amino acid substitutions in the host receptor-binding protein hemagglutinin, and one in the polymerase complex protein basic polymerase 2, were consistently present in airborne-transmitted viruses. The transmissible viruses were sensitive to the antiviral drug oseltamivir and reacted well with antisera raised against H5 influenza vaccine strains. Thus, avian A/H5N1 influenza viruses can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host and therefore constitute a risk for human pandemic influenza.

lunes, 18 de junio de 2012

International Laboratory Safety Culture Survey

La prestigiosa revista Nature realiza en colaboración con el Centro para la Seguridad de Laboratorios de la Universidad de California y BioRAFT una encuesta (International Laboratory Safety Culture Survey [english]) sobre cultura de seguridad en laboratorios de investigación, e invitan a todos los investigadores a que participen, de forma anonima. La encuesta toma responderla entre 15 y 20 minutos y realiza preguntas sobre el tipo de materiales que se utilizan en investigación y que representan un riesgo para el personal, prácticas de entrenamiento, políticas de seguridad, actitudes y creencias, así cono su impacto en investigación. No están realizando invitaciones directas así que todos los interesados pueden participar visitando la página de Nature (AQUI), o directamente en la encuesta (AQUI).

miércoles, 13 de junio de 2012

World Rabies Day Webinar, Sept. 20-21, 2012

The Global Alliance for Rabies Control, in cooperation with the U.S. Centers for Disease Control and Prevention, is pleased to announce the 3rd Annual World Rabies Day Webinar to be held September 20-21, 2012. The Webinar brings together noted leaders in rabies research, One-Health advocates, professionals, students and World Rabies Day event planners in real-time to discuss the important public health issue of rabies while providing a forum for dialogue within and across disciplines. 
The two day event will focus on canine rabies elimination; human rabies surveillance, prevention and intervention; wildlife rabies control; information and education campaigns and building sustainable programs. Day 1 (Sept 20) of the Webinar will concentrate on presentations from Asia, the Middle East, Europe and Africa. Day 2 (Sept 21) will spotlight talks from North America, Latin America and the Caribbean Regions. 

Enviado por: "Juan A. Montaño"

domingo, 10 de junio de 2012

Natural ventilation for Infection Control / Ventilación natural para el control de infecciones

Durante los dos últimos años, un equipo multidisciplinario de ingenieros, arquitectos, especialistas en el control de las infecciones y microbiólogos ha trabajado en la elaboración estas guías para proporcionar pautas de diseño y funcionamiento a los planificadores, ingenieros y arquitectos de hospitales y al personal encargado del control de las infecciones nosocomiales. Las recomendaciones de esta guía de la OMS se basan en una revisión sistemática de la bibliografía consagrada a la relación entre la ventilación y la transmisión de enfermedades, así como a las soluciones de ventilación natural eficaces en el control de las infecciones. Esta guía de la OMS debe usarse junto con otras recomendaciones de interés en el control de las infecciones. 



This guideline is primarily developed for engineers and architects who design or operate health-care facilities. The guideline is also useful for health-care workers, particularly infection-control professionals who work in health-care facilities. The guideline recognizes that the hospital designers, operators and health-care workers need to work together for effective infection control. This guideline applies to diseases that can be transmitted through fine droplets or through droplet nuclei. The guideline describes how an airborne precaution room and its adjacent areas can be designed to provide natural ventilation control of infections. However, this guideline does not include thorough descriptions for other infection-prevention and control measures.

viernes, 8 de junio de 2012

VIDEO: Aseptic laboratory techniques: plating methods.

Abstract: 
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: Perform plating procedures without contaminating media. Isolate single bacterial colonies by the streak-plating method. Use pour-plating and spread-plating methods to determine the concentration of bacteria. Perform soft agar overlays when working with phage. Transfer bacterial cells from one plate to another using the replica-plating procedure. Given an experimental task, select the appropriate plating method.
Reference: 
Sanders ER. Aseptic laboratory techniques: plating methods. J Vis Exp. 2012 May 11;(63). pii: 3064.

Screening category A and B priority #pathogens

Abstract. One of the objectives of the National Institutes of Allergy and Infectious Diseases (NIAID) Biodefense Program is to identify or develop broad-spectrum antimicrobials for use against bioterrorism pathogens and emerging infectious agents. As a part of that program, our institution has screened the 10 000-compound MyriaScreen Diversity Collection of high-purity druglike compounds against three NIAID category A and one category B priority pathogens in an effort to identify potential compound classes for further drug development. The effective use of a Clinical and Laboratory Standards Institutebased high-throughput screening (HTS) 96-wellbased format allowed for the identification of 49 compounds that had in vitro activity against all four pathogens with minimum inhibitory concentration values of 16 g/mL. Adaptation of the HTS process was necessary to conduct the work in higher-level containment, in this case, biosafety level 3. Examination of chemical scaffolds shared by some of the 49 compounds and assessment of available chemical databases indicates that several may represent broad-spectrum antimicrobials whose activity is based on novel mechanisms of action. 


References
Barrow EW, et.al. High-Throughput Screening of a Diversity Collection Using Biodefense Category A and B Priority Pathogens. J Biomol Screen. 2012 May 31. 
NIAID Category A, B, and C Priority PathogensNIAID’s pathogen priority list is periodically reviewed and is subject to revision in conjunction with our federal partners, including the Department of Homeland Security, which determines threat assessments, and the Centers for Disease Control and Prevention (CDC), which is responsible for responding to emerging pathogen threats in the United States. 

miércoles, 6 de junio de 2012

#AMEXBIO: Revista Liderazgo y Experiencia Médica

Vean la nueva versión de la revista Liderazgo y Experiencia Médica, todo un número sobre la Asociación Mexicana de Bioseguridad y sus actividades, así como importantes artículos de profesionales de la Seguridad Biológica.

Biorisk Assessment Models (#BioRAMs)

The biorisk assessment models were designed for use by biorisk officers at laboratories and provide visualization of the relative risks, and help to identify risk mitigation measures. These models have incorporated IBTR and international biorisk officer experience in drafting sets of criteria, prioritizing the criteria, and outlining scoring functions for the criteria. The main objective of these models is to help strengthen risk governance in the laboratories by providing assessment methods that are is standardized, systematic, and repeatable. Biorisk subject matter expertise was critical in the development of these models, as there currently is no straight imperial data for laboratory biorisks.
  1. Biorisk Assessment Models (BioRAMs) (Intro)
  2. Biosafety Risk Assessment Methodology
  3. Strengthening Risk Governance in Bioscience Laboratories
  4. BioRAM (Biosafety and Biosecurity) Software: (You can obtain a link to download the software via email)